Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Nature ; 627(8003): 407-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383779

RESUMO

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.


Assuntos
Aquaporina 4 , Autoanticorpos , Autoantígenos , Linfócitos B , Tolerância Imunológica , Neuromielite Óptica , Animais , Humanos , Camundongos , 60533 , Aquaporina 4/deficiência , Aquaporina 4/genética , Aquaporina 4/imunologia , Aquaporina 4/metabolismo , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD40/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Células Epiteliais da Tireoide/imunologia , Células Epiteliais da Tireoide/metabolismo , Transcriptoma
2.
Nature ; 623(7988): 803-813, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938781

RESUMO

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.


Assuntos
Autoanticorpos , Predisposição Genética para Doença , Interferon Tipo I , NF-kappa B , Humanos , Autoanticorpos/imunologia , COVID-19/genética , COVID-19/imunologia , Mutação com Ganho de Função , Heterozigoto , Proteínas I-kappa B/deficiência , Proteínas I-kappa B/genética , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Mutação com Perda de Função , NF-kappa B/deficiência , NF-kappa B/genética , Subunidade p52 de NF-kappa B/deficiência , Subunidade p52 de NF-kappa B/genética , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Timo/anormalidades , Timo/imunologia , Timo/patologia , Células Epiteliais da Tireoide/metabolismo , Células Epiteliais da Tireoide/patologia
3.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511265

RESUMO

There is much evidence linking oxidative stress to thyroid cancer, and stem cells are thought to play a key role in the tumor-initiating mechanism. Their vulnerability to oxidative stress is unexplored. This study aimed to comparatively evaluate the antioxidant capacity of stem/precursor thyroid cells and mature thyrocytes. Human stem/precursor cells and mature thyrocytes were exposed to increasing concentrations of menadione, an oxidative-stress-producing agent, and reactive oxygen species (ROS) production and cell viability were measured. The expression of antioxidant and detoxification genes was measured via qPCR as well as the total antioxidant capacity and the content of glutathione. Menadione elevated ROS generation in stem/precursor thyroid cells more than in mature thyrocytes. The ROS increase was inversely correlated (p = 0.005) with cell viability, an effect that was partially prevented by the antioxidant curcumin. Most thyroid antioxidant defense genes, notably those encoding for the glutathione-generating system and phase I detoxification enzymes, were significantly less expressed in stem/precursor thyroid cells. As a result, the glutathione level and the total antioxidant capacity in stem/precursor thyroid cells were significantly decreased. This reduced antioxidant defense may have clinical implications, making stem/precursor thyroid cells critical targets for environmental conditions that are not detrimental for differentiated thyrocytes.


Assuntos
Células Epiteliais da Tireoide , Glândula Tireoide , Humanos , Glândula Tireoide/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Epiteliais da Tireoide/metabolismo , Vitamina K 3 , Estresse Oxidativo , Glutationa/metabolismo , Células-Tronco/metabolismo
4.
Nat Rev Cancer ; 23(9): 631-650, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37438605

RESUMO

The genomic simplicity of differentiated cancers derived from thyroid follicular cells offers unique insights into how oncogenic drivers impact tumour phenotype. Essentially, the main oncoproteins in thyroid cancer activate nodes in the receptor tyrosine kinase-RAS-BRAF pathway, which constitutively induces MAPK signalling to varying degrees consistent with their specific biochemical mechanisms of action. The magnitude of the flux through the MAPK signalling pathway determines key elements of thyroid cancer biology, including differentiation state, invasive properties and the cellular composition of the tumour microenvironment. Progression of disease results from genomic lesions that drive immortalization, disrupt chromatin accessibility and cause cell cycle checkpoint dysfunction, in conjunction with a tumour microenvironment characterized by progressive immunosuppression. This Review charts the genomic trajectories of these common endocrine tumours, while connecting them to the biological states that they confer.


Assuntos
Células Epiteliais da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Células Epiteliais da Tireoide/metabolismo , Células Epiteliais da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Transdução de Sinais , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Microambiente Tumoral/genética
5.
BMC Med ; 21(1): 206, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280674

RESUMO

BACKGROUND: Hashimoto's thyroiditis (HT) is an organ-specific autoimmune disease characterized by lymphocyte infiltration that destroys thyrocyte cells. The aim of the present study was to elucidate the role and mechanisms of tissue small extracellular vesicle (sEV) microRNAs (miRNAs) in the pathogenesis of HT. METHODS: Differentially expressed tissue sEV miRNAs were identified between HT tissue and normal tissue by RNA sequencing in the testing set (n = 20). Subsequently, using quantitative real-time polymerase chain reaction (qRT‒PCR) assays and logistic regression analysis in the validation set (n = 60), the most relevant tissue sEV miRNAs to HT were verified. The parental and recipient cells of that tissue sEV miRNA were then explored. In vitro and in vivo experiments were further performed to elucidate the function and potential mechanisms of sEV miRNAs that contribute to the development of HT. RESULTS: We identified that miR-142-3p encapsulated in T lymphocyte-derived tissue sEVs can induce Treg function defect and thyrocyte destruction through an intact response loop. Inactivation of miR-142-3p can effectively protect non-obese diabetic (NOD).H-2h4 mice from HT development display reduced lymphocyte infiltration, lower antibody titers, and higher Treg cells. Looking at the mechanisms underlying sEV action on thyrocyte destruction, we found that the strong deleterious effect mediated by tissue sEV miR-142-3p is due to its ability to block the activation of the ERK1/2 signaling pathway by downregulating RAC1. CONCLUSIONS: Our findings highlight the fact that tissue sEV-mediated miR-142-3p transfer can serve as a communication mode between T lymphocytes and thyrocyte cells in HT, favoring the progression of HT.


Assuntos
Vesículas Extracelulares , MicroRNAs , Células Epiteliais da Tireoide , Tireoidite , Camundongos , Animais , Células Epiteliais da Tireoide/metabolismo , Linfócitos T Reguladores , Camundongos Endogâmicos NOD , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo
6.
J Endocrinol Invest ; 46(12): 2501-2512, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37133653

RESUMO

PURPOSE: Thyroid cell lines are useful tools to study the physiology and pathology of the thyroid, however, they do not produce or secrete hormones in vitro. On the other hand, the detection of endogenous thyroid hormones in primary thyrocytes was often hindered by the dedifferentiation of thyrocytes ex vivo and the presence of large amounts of exogenous hormones in the culture medium. This study aimed to create a culture system that could maintain the function of thyrocytes to produce and secrete thyroid hormones in vitro. METHODS: We established a Transwell culture system of primary human thyrocytes. Thyrocytes were seeded on a porous membrane in the inner chamber of the Transwell with top and bottom surfaces exposed to different culture components, mimicking the 'lumen-capillary' structure of the thyroid follicle. Moreover, to eliminate exogenous thyroid hormones from the culture medium, two alternatives were tried: a culture recipe using hormone-reduced serum and a serum-free culture recipe. RESULTS: The results showed that primary human thyrocytes expressed thyroid-specific genes at higher levels in the Transwell system than in the monolayer culture. Hormones were detected in the Transwell system even in the absence of serum. The age of the donor was negatively related to the hormone production of thyrocytes in vitro. Intriguingly, primary human thyrocytes cultured without serum secreted higher levels of free triiodothyronine (FT3) than free thyroxine (FT4). CONCLUSION: This study confirmed that primary human thyrocytes could maintain the function of hormone production and secretion in the Transwell system, thus providing a useful tool to study thyroid function in vitro.


Assuntos
Células Epiteliais da Tireoide , Glândula Tireoide , Humanos , Glândula Tireoide/metabolismo , Células Epiteliais da Tireoide/metabolismo , Células Cultivadas , Hormônios Tireóideos/metabolismo , Tri-Iodotironina/farmacologia , Tiroxina , Tireotropina/metabolismo
7.
J Trace Elem Med Biol ; 78: 127151, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36948046

RESUMO

BACKGROUND: Hexavalent chromium known as oxidizing agent is able to form reactive oxygen species. Aronia melanocarpa and Hypericum perforatum are two plants known for their antioxidant effects. Our study aimed to establish if CrVI induces apoptosis and structural changes in thyrocytes and if its effect can be counteracted by the administration of both extracts. MATERIALS AND METHODS: Wistar rats divided in five groups: C - distilled water (DW), Cr - 75 mg/L CrVI in DW for 3 months, Cr 2 - 75 mg/L CrVI in DW for 3 months followed by 1 month DW, CrA - 3 months 75 mg/L CrVI in DW and 1 month Aronia 2.5% extract, CrH - 3 months 75 mg/L CrVI in DW and 1 month Hypericum 2.5% extract. Histological assessment and qRT-PCR for evaluation of BAX and Bcl2 protein levels performed on thyroid samples. RESULTS: The Cr and Cr2 groups were those with altered cytoarchitecture: increase in the diameter of many thyroid follicles, a decrease in their number, a decrease in the height of the follicular cells. The histological examination of the CrH group revealed almost recovery of structural architecture. The BAX gene levels were higher in the Cr and Cr2 groups indicating the apoptotic activity of chromium. In extract receiving groups the BAX gene expressions were significantly lower, but the lowest level presented the CrH group. Bcl2 gene expression levels indicate antiapoptotic activity being elevated in the Cr group, followed by CrA, Cr2, and CrH groups. The BAX/Bcl2 ratio which significantly increased in the case of the Cr and Cr2 group compared to the groups that were administered the two plant extracts. CONCLUSION: The results obtained in this study confirm that CrVI has toxic effects on thyroid endocrine cells and H. perforatum has stronger antioxidant properties against the action of hexavalent chromium in thyrocytes than A. melanocarpa.


Assuntos
Hypericum , Photinia , Células Epiteliais da Tireoide , Ratos , Animais , Photinia/metabolismo , Hypericum/metabolismo , Ratos Wistar , Proteína X Associada a bcl-2 , Células Epiteliais da Tireoide/metabolismo , Antioxidantes/metabolismo , Cromo/farmacologia , Cromo/análise , Água
8.
Mol Biol Rep ; 50(4): 3633-3640, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807042

RESUMO

BACKGROUND: Hashimoto thyroiditis (HT) is considered the most common autoimmune thyroid disease. A growing body of evidence suggests that HT incidence correlates with excessive iodine intake. We should probe the effects of excessive iodine intake in HT development and its possible mechanism. METHODS AND RESULTS: The study recruited 20 patients: 10 with HT and 10 with nodular goiter. We detected the expression of an apoptosis-related protein caspase-3 by immunohistochemistry. In vitro study, we explored the proliferation and apoptosis status in thyroid follicular cells (TFCs) stimulated with different iodine concentrations by MTT and flow cytometry. Then we performed RNA sequence analysis of Nthy-ori3-1 cells treated for 48 h with KI to probe the underlying mechanism. Finally, we used RT-PCR and siRNA interference to verify the results. We identified apoptosis in thyroid tissue obtained from HT patients coincides with the increase of caspase-3 levels. In vitro study, iodine suppressed proliferation of TFCs and promoted TFCs apoptosis in a dose-dependent manner with regulating caspase-3 activation. HIF-1α-NDRG1 mediated hypoxia pathway activation promoted the transmission of essential apoptosis signals in TFCs. CONCLUSION: Our study confirmed that excessive iodine adsorption activates the HIF-1α-mediated hypoxia pathway to promote apoptosis of TFCs, which may be an important risk factor contributing to HT development.


Assuntos
Doença de Hashimoto , Iodo , Células Epiteliais da Tireoide , Humanos , Apoptose , Caspase 3/genética , Doença de Hashimoto/genética , Hipóxia , Células Epiteliais da Tireoide/metabolismo
9.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36362390

RESUMO

The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences.


Assuntos
Hipotireoidismo , Células Epiteliais da Tireoide , Camundongos , Humanos , Animais , Tireoglobulina/metabolismo , Hipotireoidismo/metabolismo , Células Epiteliais da Tireoide/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo
10.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293065

RESUMO

Thyroid Nodules (TN) are frequent but mostly benign, and postoperative rate of benign TN attains the values from 70% to 90%. Therefore, there is an urgent need for identification of reliable preoperative diagnosis markers for patients with indeterminate thyroid cytology. In this study, an earlier unexplored design of research on preoperative biomarkers for thyroid malignancies was proposed. Evaluation of reported results of studies addressing the links of thyroid cancer to the circadian clockwork dysfunctions and abnormal activities of Thyroid-Stimulating Hormone (TSH) and its receptor (TSH-R) suggested diagnostic significance of such links. However, there is still a gap in studies of interrelationships between diurnal profiles of expression of circadian clock genes and TSH-R in indeterminate thyroid tissue exposed to different concentrations of TSH. These interrelationships might be investigated in future in vitro experiments on benign and malignant thyrocytes cultivated under normal and challenged TSH levels. Their design requires simultaneous measurement of diurnal profiles of expression of both circadian clock genes and TSH-R. Experimental results might help to bridge previous studies of preoperative biomarkers for thyroid carcinoma exploring diagnostic value of diurnal profiles of serum TSH levels, expression of TSH-R, and expression of circadian clock genes.


Assuntos
Relógios Circadianos , Células Epiteliais da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Tireotropina/metabolismo , Relógios Circadianos/genética , Células Epiteliais da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/cirurgia , Biomarcadores
11.
Endocr J ; 69(10): 1261-1269, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35675983

RESUMO

Sulfonation is an important step in the metabolism of dopamine, estrogens, dehydroepiandrosterone, as well as thyroid hormones. However, the regulation of cytosolic sulfotransferases in the thyroid is not well understood. In a DNA microarray analysis of rat thyroid FRTL-5 cells, we found that the mRNA expression of 10 of 48 sulfotransferases was significantly altered by thyroid stimulating hormone (TSH), with that of sulfotransferase family 1A member 1 (SULT1A1) being the most significantly affected. Real-time PCR and Western blot analyses revealed that TSH, forskolin and dibutyryl cyclic AMP significantly suppressed SULT1A1 mRNA and protein levels in a time- and concentration-dependent manner. Moreover, immunofluorescence staining of FRTL-5 cells showed that SULT1A1 is localized in the perinuclear area in the absence of TSH but is spread throughout the cytoplasm with reduced fluorescence intensity in the presence of TSH. Sulfotransferase activity in FRTL-5 cells, measured using 3'-phosphoadenosine-5'-phosphosulfate as a donner and p-nitrophenol as an acceptor substrate, was significantly reduced by TSH. These findings suggest that the expression and activity of SULT1A1 are modulated by TSH in thyrocytes.


Assuntos
Células Epiteliais da Tireoide , Tireotropina , Ratos , Animais , Tireotropina/farmacologia , Tireotropina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , RNA Mensageiro/metabolismo
12.
Endocr J ; 69(10): 1217-1225, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35644541

RESUMO

Solute carrier family 26 member 7 (SLC26A7), identified as a causative gene for congenital hypothyroidism, was found to be a novel iodide transporter expressed on the apical side of the follicular epithelium of the thyroid. We recently showed that TSH suppressed the expression of SLC26A7 and induces its localization to the plasma membrane, where it functions. We also showed that the ability of TSH to induce thyroid hormone synthesis is completely reversed by an autocrine negative-feedback action of thyroglobulin (Tg) stored in the follicular lumen. In the present study, we investigated the potential effect of follicular Tg on SLC26A7 expression and found that follicular Tg significantly suppressed the promoter activity, mRNA level, and protein level of SLC26A7 in rat thyroid FRTL-5 cells. In addition, follicular Tg inhibited the ability of TSH to induce the membrane localization of SLC26A7. In rat thyroid sections, the expression of SLC26A7 was weaker in follicles with a higher concentration of Tg, as evidenced by immunofluorescence staining. These results indicate that Tg stored in the follicular lumen is a feedback suppressor of the expression and membrane localization of SLC26A7, thereby downregulating the transport of iodide into the follicular lumen.


Assuntos
Tireoglobulina , Células Epiteliais da Tireoide , Animais , Ratos , Antiporters/genética , Antiporters/metabolismo , Iodetos/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Tireoglobulina/genética , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Tireotropina/metabolismo
13.
Cells ; 11(8)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455992

RESUMO

The transcription factor CREB3L1 is expressed in a wide variety of tissues including cartilage, pancreas, and bone. It is located in the endoplasmic reticulum and upon stimulation is transported to the Golgi where is proteolytically cleaved. Then, the N-terminal domain translocates to the nucleus to activate gene expression. In thyroid follicular cells, CREB3L1 is a downstream effector of thyrotropin (TSH), promoting the expression of proteins of the secretory pathway along with an expansion of the Golgi volume. Here, we analyzed the role of CREB3L1 as a TSH-dependent transcriptional regulator of the expression of the sodium/iodide symporter (NIS), a major thyroid protein that mediates iodide uptake. We show that overexpression and inhibition of CREB3L1 induce an increase and decrease in the NIS protein and mRNA levels, respectively. This, in turn, impacts on NIS-mediated iodide uptake. Furthermore, CREB3L1 knockdown hampers the increase the TSH-induced NIS expression levels. Finally, the ability of CREB3L1 to regulate the promoter activity of the NIS-coding gene (Slc5a5) was confirmed. Taken together, our findings highlight the role of CREB3L1 in maintaining the homeostasis of thyroid follicular cells, regulating the adaptation of the secretory pathway as well as the synthesis of thyroid-specific proteins in response to TSH stimulation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Simportadores , Células Epiteliais da Tireoide , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ratos , Simportadores/genética , Simportadores/metabolismo , Células Epiteliais da Tireoide/metabolismo , Tireotropina/metabolismo , Tireotropina/farmacologia
14.
Nat Commun ; 13(1): 775, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140214

RESUMO

Hashimoto's thyroiditis (HT) is the most common autoimmune disease characterized by lymphocytic infiltration and thyrocyte destruction. Dissection of the interaction between the thyroidal stromal microenvironment and the infiltrating immune cells might lead to a better understanding of HT pathogenesis. Here we show, using single-cell RNA-sequencing, that three thyroidal stromal cell subsets, ACKR1+ endothelial cells and CCL21+ myofibroblasts and CCL21+ fibroblasts, contribute to the thyroidal tissue microenvironment in HT. These cell types occupy distinct histological locations within the thyroid gland. Our experiments suggest that they might facilitate lymphocyte trafficking from the blood to thyroid tissues, and T cell zone CCL21+ fibroblasts may also promote the formation of tertiary lymphoid organs characteristic to HT. Our study also demonstrates the presence of inflammatory macrophages and dendritic cells expressing high levels of IL-1ß in the thyroid, which may contribute to thyrocyte destruction in HT patients. Our findings thus provide a deeper insight into the cellular interactions that might prompt the pathogenesis of HT.


Assuntos
Microambiente Celular/imunologia , Doença de Hashimoto/metabolismo , Linfócitos/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Doenças Autoimunes/metabolismo , Quimiocina CCL21/metabolismo , Citocinas/metabolismo , Sistema do Grupo Sanguíneo Duffy , Células Endoteliais/metabolismo , Humanos , Interleucina-1beta , Células Mieloides , Receptores de Superfície Celular , Glândula Tireoide/patologia
15.
Sci Rep ; 12(1): 2144, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140269

RESUMO

While the signaling pathways and transcription factors involved in the differentiation of thyroid follicular cells, both in embryonic and adult life, are increasingly well understood, the underlying mechanisms and potential crosstalk between the thyroid transcription factors Nkx2.1, Foxe1 and Pax8 and inductive signals remain unclear. Here, we focused on the transcription factor Sox9, which is expressed in Nkx2.1-positive embryonic thyroid precursor cells and is maintained from embryonic development to adulthood, but its function and control are unknown. We show that two of the main signals regulating thyroid differentiation, TSH and TGFß, modulate Sox9 expression. Specifically, TSH stimulates the cAMP/PKA pathway to transcriptionally upregulate Sox9 mRNA and protein expression, a mechanism that is mediated by the binding of CREB to a CRE site within the Sox9 promoter. Contrastingly, TGFß signals through Smad proteins to inhibit TSH-induced Sox9 transcription. Our data also reveal that Sox9 transcription is regulated by the thyroid transcription factors, particularly Pax8. Interestingly, Sox9 significantly increased the transcriptional activation of Pax8 and Foxe1 promoters and, consequently, their expression, but had no effect on Nkx2.1. Our study establishes the involvement of Sox9 in thyroid follicular cell differentiation and broadens our understanding of transcription factor regulation of thyroid function.


Assuntos
Fatores de Transcrição SOX9/metabolismo , Células Epiteliais da Tireoide/citologia , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Tireotropina/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Camundongos , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição SOX9/genética , Transdução de Sinais , Glândula Tireoide/citologia , Glândula Tireoide/embriologia , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo , Tireotropina/farmacologia , Transcrição Gênica , Fator de Crescimento Transformador beta/farmacologia
16.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054977

RESUMO

Vitamin D plays an essential role in prevention and treatment of osteoporosis. Thyroid hormones, in addition to vitamin D, significantly contribute to regulation of bone remodeling cycle and health. There is currently no data about a possible connection between vitamin D treatment and the thyroid in the context of osteoporosis. Middle-aged Wistar rats were divided into: sham operated (SO), orchidectomized (Orx), and cholecalciferol-treated orchidectomized (Orx + Vit. D3; 5 µg/kg b.m./day during three weeks) groups (n = 6/group). Concentration of 25(OH)D in serum of the Orx + Vit. D3 group increased 4 and 3.2 times (p < 0.0001) respectively, compared to Orx and SO group. T4, TSH, and calcitonin in serum remained unaltered. Vit. D3 treatment induced changes in thyroid functional morphology that indicate increased utilization of stored colloid and release of thyroid hormones in comparison with hormone synthesis, to maintain hormonal balance. Increased expression of nuclear VDR (p < 0.05) points to direct, TSH independent action of Vit. D on thyrocytes. Strong CYP24A1 immunostaining in C cells suggests its prominent expression in response to Vit. D in this cell subpopulation in orchidectomized rat model of osteoporosis. The indirect effect of Vit. D on bone, through fine regulation of thyroid function, is small.


Assuntos
Colecalciferol/farmacologia , Osteoporose/etiologia , Osteoporose/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Animais , Biomarcadores , Peso Corporal , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Hormônios/metabolismo , Imuno-Histoquímica , Masculino , Orquiectomia , Tamanho do Órgão , Osteoporose/tratamento farmacológico , Osteoporose/patologia , Ratos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Células Epiteliais da Tireoide/efeitos dos fármacos , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/patologia , Glândula Tireoide/ultraestrutura , Vitamina D3 24-Hidroxilase/metabolismo
17.
Endocr Pathol ; 33(2): 315-326, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34997561

RESUMO

In this report, we present a high-grade thyroid carcinoma with an NSD3::NUTM1 fusion detected on expanded next-generation sequencing testing. Nuclear protein of the testis (NUT) carcinomas comprise high-grade, aggressive tumors characterized by rearrangements of the NUTM1 gene with various partner genes, most commonly the bromodomain protein genes BRD4 and BRD3. Approximately 10% of NUT carcinomas contain an NSD3::NUTM1 fusion. NUT carcinomas manifest as poorly differentiated or undifferentiated squamous carcinomas, and 33% show areas of mature squamous differentiation. Only exceptionally have NUT carcinomas shown histology discordant from poorly differentiated/undifferentiated squamous carcinoma, and a thyroid NUT carcinoma with histologic thyrocyte differentiation has not been described to date. Our patient's tumor exhibited mixed cytologic features suggestive of squamoid cells or papillary thyroid carcinoma cells. Overt squamous differentiation was absent, and the tumor produced colloid in poorly formed follicles. Immunophenotypically, the carcinoma was consistent with thyrocyte differentiation with expression of monoclonal PAX8, TTF1, and thyroglobulin (the last predominantly in extracellular colloid). There was zero to < 2% reactivity for proteins typically diffusely expressed in NUT carcinoma: p40, p63, and cytokeratins 5/6. NUT protein expression was equivocal, but fluorescence in situ hybridization confirmed a NUTM1 rearrangement. This exceptional case suggests that NUTM1 fusions may occur in an unknown number of aggressive thyroid carcinomas, possibly with distinctive histologic features but with thyrocyte differentiation. Recognition of this entity potentially has significant prognostic implications. Moreover, thyroid carcinomas with NUTM1 fusions may be amenable to treatment with NUT carcinoma-targeted therapy such as a bromodomain and extraterminal domain protein small molecular inhibitor (BETi).


Assuntos
Carcinoma de Células Escamosas , Células Epiteliais da Tireoide , Neoplasias da Glândula Tireoide , Proteínas de Ciclo Celular , Coloides , Humanos , Hibridização in Situ Fluorescente , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Células Epiteliais da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Thyroid ; 32(1): 90-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34714162

RESUMO

Background: The pathogenesis of Graves' hyperthyroidism (GH) and associated Graves' orbitopathy (GO) appears to involve stimulatory autoantibodies (thyrotropin receptor [TSHR]-stimulating antibodies [TSAbs]) that bind to and activate TSHRs on thyrocytes and orbital fibroblasts. In general, measurement of circulating TSHR antibodies by clinical assays correlates with the status of GH and GO. However, most clinical measurements of TSHR antibodies use competitive binding assays that do not distinguish between TSAbs and antibodies that bind to but do not activate TSHRs. Moreover, clinical assays for TSAbs measure stimulation of only one signaling pathway, the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, in engineered cells that are not thyrocytes or orbital fibroblasts. We determined whether measuring TSAbs by a cAMP-PKA readout in engineered cells accurately reveals the efficacies of stimulation by these antibodies on thyrocytes and orbital fibroblasts. Methods: We measured TSAb stimulation of normal human thyrocytes and orbital fibroblasts from patients with GO in primary cultures in vitro. In thyrocytes, we measured secretion of thyroglobulin (TG) and in orbital fibroblasts secretion of hyaluronan (hyaluronic acid [HA]). We also measured stimulation of cAMP production in engineered TSHR-expressing cells in an assay similar to clinical assays. Furthermore, we determined whether there were differences in stimulation of thyrocytes and orbital fibroblasts by TSAbs from patients with GH alone versus from patients with GO understanding that patients with GO have accompanying GH. Results: We found a positive correlation between TSAb stimulation of cAMP production in engineered cells and TG secretion by thyrocytes as well as HA secretion by orbital fibroblasts. However, TSAbs from GH patients stimulated thyrocytes more effectively than TSAbs from GO patients, whereas TSAbs from GO patients were more effective in activating orbital fibroblasts than TSAbs from GH patients. Conclusions: Clinical assays of stimulation by TSAbs measuring activation of the cAMP-PKA pathway do correlate with stimulation of thyrocytes and orbital fibroblasts; however, they do not distinguish between TSAbs from GH and GO patients. In vitro, TSAbs exhibit selectivity in activating TSHRs since TSAbs from GO patients were more effective in stimulating orbital fibroblasts and TSAbs from GH patients were more effective in stimulating thyrocytes.


Assuntos
Autoanticorpos/imunologia , Fibroblastos/imunologia , Oftalmopatia de Graves/complicações , Células Epiteliais da Tireoide/imunologia , Adulto , Autoanticorpos/análise , Feminino , Fibroblastos/metabolismo , Doença de Graves/sangue , Doença de Graves/imunologia , Oftalmopatia de Graves/sangue , Oftalmopatia de Graves/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Células Epiteliais da Tireoide/metabolismo , Tireotropina/metabolismo
19.
Folia Morphol (Warsz) ; 81(3): 594-605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34018174

RESUMO

BACKGROUND: The aim of the current work was to clarify the modulation role of green tea extract (GTE) over structural and functional affection of the thyroid gland after long term use of lithium carbonate (LC). The suggested underlying mechanisms participating in thyroid affection were researched. MATERIALS AND METHODS: Twenty-four Sprague-Dawley adult albino rats were included in the work. They were divided into three groups (control, LC, and concomitant LC + GTE). The work was sustained for 8 weeks. Biochemical assays were performed (thyroid hormone profile, interleukin 6 [Il-6]). Histological, histochemical (Periodic Acid Schiff [PAS]) and immunohistochemical (caspase-3, tumour necrosis factor alpha [TNF-α], proliferating cell nuclear antigen [PCNA]) evaluations were done. Oxidative/antioxidative markers (malondialdehyde [MDA]/gluthathione [GSH], superoxide dismutase [SOD]) and Western blot evaluation of the Bcl2 family were done. RESULTS: Lithium carbonate induced hypothyroidism (decreased T3, T4/increased thyroid-stimulating hormone [TSH]). The follicles were distended, others were involuted. Some follicles were disorganised, others showed detached follicular cells. Apoptotic follicular cells were shown (BAX and caspase-3 increased, Bcl2 decreased, BAX/Bcl2 ratio increased). The collagen fibres' content and proinflammatory markers (TNF-α and IL-6) increased. The proliferative nuclear activity was supported by increased expression of PCNA. Oxidative stress was established (increased MDA/decreased GSH, SOD). With the use of GTE, the thyroid hormone levels increased, while the TSH level decreased. Apoptosis was improved as BAX decreased, Bcl2 increased, and BAX/Bcl2 ratio was normal. The collagen fibres' content and proinflammatory markers (TNF-α and IL-6) decreased. The expression of PCNA and caspase-3 were comparable to the control group. The oxidative markers were improved (decreased MDA/increased GSH, SOD). CONCLUSIONS: In conclusion, prolonged use of LC results in hypothyroidism, which is accompanied by structural thyroid damage. LC induced thyroid damage through oxidative stress that prompted sterile inflammation and apoptosis. With the use of GTE, the thyroid gland regained its structure and function. The protecting role of GTE is through antioxidant, antifibrotic, anti-inflammatory, and antiproliferative effects.


Assuntos
Hipotireoidismo , Células Epiteliais da Tireoide , Animais , Antioxidantes/farmacologia , Caspase 3/metabolismo , Colágeno/metabolismo , Glutationa/metabolismo , Hipotireoidismo/induzido quimicamente , Interleucina-6/metabolismo , Lítio/farmacologia , Carbonato de Lítio/farmacologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Chá/química , Células Epiteliais da Tireoide/metabolismo , Hormônios Tireóideos/farmacologia , Tireotropina/metabolismo , Tireotropina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia
20.
Artigo em Chinês | MEDLINE | ID: mdl-34624962

RESUMO

Endocrine disrupting chemicals (EDCs) are a kind of exogenous chemicals widely existing in the environment, which cause serious harm to the environment and human health. At present, the impact of this type of substance on the thyroid has attracted much attention.This review summarized the effects of EDCs on thyroid hormones, and phosphatidylinositol 3-kinase (PI3K) /protein kinase B (Akt) /mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) signaling pathway and its role in thyroid diseases, and explore the role of PI3K/Akt/mTOR signaling pathway in EDCs-induced apoptosis and autophagy of thyroid follicular epithelial cells.This paper could provide further understandings for thyroid diseases induced by the autophagy and apoptosis of thyroid follicular epithelial cells.


Assuntos
Disruptores Endócrinos , Células Epiteliais da Tireoide , Apoptose , Autofagia , Disruptores Endócrinos/toxicidade , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Células Epiteliais da Tireoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...